Extensions 1→N→G→Q→1 with N=C8xD5 and Q=C22

Direct product G=NxQ with N=C8xD5 and Q=C22
dρLabelID
D5xC22xC8160D5xC2^2xC8320,1408

Semidirect products G=N:Q with N=C8xD5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C8xD5):1C22 = D5xC8:C22φ: C22/C1C22 ⊆ Out C8xD5408+(C8xD5):1C2^2320,1444
(C8xD5):2C22 = SD16:D10φ: C22/C1C22 ⊆ Out C8xD5808-(C8xD5):2C2^2320,1445
(C8xD5):3C22 = D8:5D10φ: C22/C1C22 ⊆ Out C8xD5808+(C8xD5):3C2^2320,1446
(C8xD5):4C22 = D8:6D10φ: C22/C1C22 ⊆ Out C8xD5808-(C8xD5):4C2^2320,1447
(C8xD5):5C22 = D40:C22φ: C22/C1C22 ⊆ Out C8xD5808+(C8xD5):5C2^2320,1449
(C8xD5):6C22 = C40.C23φ: C22/C1C22 ⊆ Out C8xD5808+(C8xD5):6C2^2320,1450
(C8xD5):7C22 = D8:13D10φ: C22/C1C22 ⊆ Out C8xD5804(C8xD5):7C2^2320,1429
(C8xD5):8C22 = D8:15D10φ: C22/C1C22 ⊆ Out C8xD5804+(C8xD5):8C2^2320,1441
(C8xD5):9C22 = D20.29D4φ: C22/C1C22 ⊆ Out C8xD5804(C8xD5):9C2^2320,1434
(C8xD5):10C22 = D8:11D10φ: C22/C1C22 ⊆ Out C8xD5804(C8xD5):10C2^2320,1442
(C8xD5):11C22 = C40.47C23φ: C22/C1C22 ⊆ Out C8xD5804(C8xD5):11C2^2320,1417
(C8xD5):12C22 = C20.72C24φ: C22/C1C22 ⊆ Out C8xD5804(C8xD5):12C2^2320,1422
(C8xD5):13C22 = C2xD5xD8φ: C22/C2C2 ⊆ Out C8xD580(C8xD5):13C2^2320,1426
(C8xD5):14C22 = C2xD8:3D5φ: C22/C2C2 ⊆ Out C8xD5160(C8xD5):14C2^2320,1428
(C8xD5):15C22 = C2xQ8.D10φ: C22/C2C2 ⊆ Out C8xD5160(C8xD5):15C2^2320,1437
(C8xD5):16C22 = D5xC4oD8φ: C22/C2C2 ⊆ Out C8xD5804(C8xD5):16C2^2320,1439
(C8xD5):17C22 = C2xD5xSD16φ: C22/C2C2 ⊆ Out C8xD580(C8xD5):17C2^2320,1430
(C8xD5):18C22 = C2xSD16:3D5φ: C22/C2C2 ⊆ Out C8xD5160(C8xD5):18C2^2320,1433
(C8xD5):19C22 = C2xD20.3C4φ: C22/C2C2 ⊆ Out C8xD5160(C8xD5):19C2^2320,1410
(C8xD5):20C22 = D5xC8oD4φ: C22/C2C2 ⊆ Out C8xD5804(C8xD5):20C2^2320,1421
(C8xD5):21C22 = C2xD5xM4(2)φ: C22/C2C2 ⊆ Out C8xD580(C8xD5):21C2^2320,1415
(C8xD5):22C22 = C2xD20.2C4φ: C22/C2C2 ⊆ Out C8xD5160(C8xD5):22C2^2320,1416

Non-split extensions G=N.Q with N=C8xD5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C8xD5).1C22 = D5xC8.C22φ: C22/C1C22 ⊆ Out C8xD5808-(C8xD5).1C2^2320,1448
(C8xD5).2C22 = D20.44D4φ: C22/C1C22 ⊆ Out C8xD51608-(C8xD5).2C2^2320,1451
(C8xD5).3C22 = D16:D5φ: C22/C1C22 ⊆ Out C8xD5804(C8xD5).3C2^2320,538
(C8xD5).4C22 = C16:D10φ: C22/C1C22 ⊆ Out C8xD5804+(C8xD5).4C2^2320,541
(C8xD5).5C22 = SD32:D5φ: C22/C1C22 ⊆ Out C8xD51604-(C8xD5).5C2^2320,542
(C8xD5).6C22 = Q32:D5φ: C22/C1C22 ⊆ Out C8xD51604(C8xD5).6C2^2320,545
(C8xD5).7C22 = D20.30D4φ: C22/C1C22 ⊆ Out C8xD51604(C8xD5).7C2^2320,1438
(C8xD5).8C22 = D20.47D4φ: C22/C1C22 ⊆ Out C8xD51604-(C8xD5).8C2^2320,1443
(C8xD5).9C22 = D10.D8φ: C22/C1C22 ⊆ Out C8xD5808-(C8xD5).9C2^2320,241
(C8xD5).10C22 = D40.C4φ: C22/C1C22 ⊆ Out C8xD5808+(C8xD5).10C2^2320,244
(C8xD5).11C22 = D40:1C4φ: C22/C1C22 ⊆ Out C8xD5808+(C8xD5).11C2^2320,245
(C8xD5).12C22 = Dic20.C4φ: C22/C1C22 ⊆ Out C8xD51608-(C8xD5).12C2^2320,248
(C8xD5).13C22 = D40:C4φ: C22/C1C22 ⊆ Out C8xD5408+(C8xD5).13C2^2320,1069
(C8xD5).14C22 = D8:F5φ: C22/C1C22 ⊆ Out C8xD5808-(C8xD5).14C2^2320,1071
(C8xD5).15C22 = Dic20:C4φ: C22/C1C22 ⊆ Out C8xD5808-(C8xD5).15C2^2320,1077
(C8xD5).16C22 = Q16:F5φ: C22/C1C22 ⊆ Out C8xD5808+(C8xD5).16C2^2320,1079
(C8xD5).17C22 = D5.D16φ: C22/C1C22 ⊆ Out C8xD5808+(C8xD5).17C2^2320,242
(C8xD5).18C22 = D8.F5φ: C22/C1C22 ⊆ Out C8xD51608-(C8xD5).18C2^2320,243
(C8xD5).19C22 = D5.Q32φ: C22/C1C22 ⊆ Out C8xD5808-(C8xD5).19C2^2320,246
(C8xD5).20C22 = Q16.F5φ: C22/C1C22 ⊆ Out C8xD51608+(C8xD5).20C2^2320,247
(C8xD5).21C22 = D8xF5φ: C22/C1C22 ⊆ Out C8xD5408+(C8xD5).21C2^2320,1068
(C8xD5).22C22 = D8:5F5φ: C22/C1C22 ⊆ Out C8xD5808-(C8xD5).22C2^2320,1070
(C8xD5).23C22 = Q16xF5φ: C22/C1C22 ⊆ Out C8xD5808-(C8xD5).23C2^2320,1076
(C8xD5).24C22 = Q16:5F5φ: C22/C1C22 ⊆ Out C8xD5808+(C8xD5).24C2^2320,1078
(C8xD5).25C22 = SD16:F5φ: C22/C1C22 ⊆ Out C8xD5408(C8xD5).25C2^2320,1073
(C8xD5).26C22 = SD16:2F5φ: C22/C1C22 ⊆ Out C8xD5808(C8xD5).26C2^2320,1075
(C8xD5).27C22 = SD16xF5φ: C22/C1C22 ⊆ Out C8xD5408(C8xD5).27C2^2320,1072
(C8xD5).28C22 = SD16:3F5φ: C22/C1C22 ⊆ Out C8xD5808(C8xD5).28C2^2320,1074
(C8xD5).29C22 = M4(2):1F5φ: C22/C1C22 ⊆ Out C8xD5408(C8xD5).29C2^2320,1065
(C8xD5).30C22 = M4(2).1F5φ: C22/C1C22 ⊆ Out C8xD5808(C8xD5).30C2^2320,1067
(C8xD5).31C22 = C80:4C4φ: C22/C1C22 ⊆ Out C8xD5804(C8xD5).31C2^2320,185
(C8xD5).32C22 = C80:5C4φ: C22/C1C22 ⊆ Out C8xD5804(C8xD5).32C2^2320,186
(C8xD5).33C22 = C16:F5φ: C22/C1C22 ⊆ Out C8xD5804(C8xD5).33C2^2320,183
(C8xD5).34C22 = C16:4F5φ: C22/C1C22 ⊆ Out C8xD5804(C8xD5).34C2^2320,184
(C8xD5).35C22 = Dic10.C8φ: C22/C1C22 ⊆ Out C8xD51608(C8xD5).35C2^2320,1063
(C8xD5).36C22 = M4(2)xF5φ: C22/C1C22 ⊆ Out C8xD5408(C8xD5).36C2^2320,1064
(C8xD5).37C22 = M4(2):5F5φ: C22/C1C22 ⊆ Out C8xD5808(C8xD5).37C2^2320,1066
(C8xD5).38C22 = D5xD16φ: C22/C2C2 ⊆ Out C8xD5804+(C8xD5).38C2^2320,537
(C8xD5).39C22 = D16:3D5φ: C22/C2C2 ⊆ Out C8xD51604-(C8xD5).39C2^2320,539
(C8xD5).40C22 = D5xSD32φ: C22/C2C2 ⊆ Out C8xD5804(C8xD5).40C2^2320,540
(C8xD5).41C22 = SD32:3D5φ: C22/C2C2 ⊆ Out C8xD51604(C8xD5).41C2^2320,543
(C8xD5).42C22 = D5xQ32φ: C22/C2C2 ⊆ Out C8xD51604-(C8xD5).42C2^2320,544
(C8xD5).43C22 = D80:5C2φ: C22/C2C2 ⊆ Out C8xD51604+(C8xD5).43C2^2320,546
(C8xD5).44C22 = C2xD5xQ16φ: C22/C2C2 ⊆ Out C8xD5160(C8xD5).44C2^2320,1435
(C8xD5).45C22 = C2xC80:C2φ: C22/C2C2 ⊆ Out C8xD5160(C8xD5).45C2^2320,527
(C8xD5).46C22 = D20.6C8φ: C22/C2C2 ⊆ Out C8xD51602(C8xD5).46C2^2320,528
(C8xD5).47C22 = D5xM5(2)φ: C22/C2C2 ⊆ Out C8xD5804(C8xD5).47C2^2320,533
(C8xD5).48C22 = D20.5C8φ: C22/C2C2 ⊆ Out C8xD51604(C8xD5).48C2^2320,534
(C8xD5).49C22 = C80:2C4φ: C22/C2C2 ⊆ Out C8xD5804(C8xD5).49C2^2320,187
(C8xD5).50C22 = C80:3C4φ: C22/C2C2 ⊆ Out C8xD5804(C8xD5).50C2^2320,188
(C8xD5).51C22 = C16.F5φ: C22/C2C2 ⊆ Out C8xD51604(C8xD5).51C2^2320,189
(C8xD5).52C22 = C80.2C4φ: C22/C2C2 ⊆ Out C8xD51604(C8xD5).52C2^2320,190
(C8xD5).53C22 = C2xD5.D8φ: C22/C2C2 ⊆ Out C8xD580(C8xD5).53C2^2320,1058
(C8xD5).54C22 = (C2xC8):6F5φ: C22/C2C2 ⊆ Out C8xD5804(C8xD5).54C2^2320,1059
(C8xD5).55C22 = C2xD10.Q8φ: C22/C2C2 ⊆ Out C8xD5160(C8xD5).55C2^2320,1061
(C8xD5).56C22 = C2xC40:C4φ: C22/C2C2 ⊆ Out C8xD580(C8xD5).56C2^2320,1057
(C8xD5).57C22 = C2xC40.C4φ: C22/C2C2 ⊆ Out C8xD5160(C8xD5).57C2^2320,1060
(C8xD5).58C22 = (C8xD5).C4φ: C22/C2C2 ⊆ Out C8xD5804(C8xD5).58C2^2320,1062
(C8xD5).59C22 = C16xF5φ: C22/C2C2 ⊆ Out C8xD5804(C8xD5).59C2^2320,181
(C8xD5).60C22 = C16:7F5φ: C22/C2C2 ⊆ Out C8xD5804(C8xD5).60C2^2320,182
(C8xD5).61C22 = C2xD5:C16φ: C22/C2C2 ⊆ Out C8xD5160(C8xD5).61C2^2320,1051
(C8xD5).62C22 = C2xC8.F5φ: C22/C2C2 ⊆ Out C8xD5160(C8xD5).62C2^2320,1052
(C8xD5).63C22 = D5:M5(2)φ: C22/C2C2 ⊆ Out C8xD5804(C8xD5).63C2^2320,1053
(C8xD5).64C22 = C2xC8xF5φ: C22/C2C2 ⊆ Out C8xD580(C8xD5).64C2^2320,1054
(C8xD5).65C22 = C2xC8:F5φ: C22/C2C2 ⊆ Out C8xD580(C8xD5).65C2^2320,1055
(C8xD5).66C22 = C20.12C42φ: C22/C2C2 ⊆ Out C8xD5804(C8xD5).66C2^2320,1056
(C8xD5).67C22 = D5xC2xC16φ: trivial image160(C8xD5).67C2^2320,526

׿
x
:
Z
F
o
wr
Q
<