extension | φ:Q→Out N | d | ρ | Label | ID |
(C8×D5)⋊1C22 = D5×C8⋊C22 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 40 | 8+ | (C8xD5):1C2^2 | 320,1444 |
(C8×D5)⋊2C22 = SD16⋊D10 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8- | (C8xD5):2C2^2 | 320,1445 |
(C8×D5)⋊3C22 = D8⋊5D10 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8+ | (C8xD5):3C2^2 | 320,1446 |
(C8×D5)⋊4C22 = D8⋊6D10 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8- | (C8xD5):4C2^2 | 320,1447 |
(C8×D5)⋊5C22 = D40⋊C22 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8+ | (C8xD5):5C2^2 | 320,1449 |
(C8×D5)⋊6C22 = C40.C23 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8+ | (C8xD5):6C2^2 | 320,1450 |
(C8×D5)⋊7C22 = D8⋊13D10 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 4 | (C8xD5):7C2^2 | 320,1429 |
(C8×D5)⋊8C22 = D8⋊15D10 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 4+ | (C8xD5):8C2^2 | 320,1441 |
(C8×D5)⋊9C22 = D20.29D4 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 4 | (C8xD5):9C2^2 | 320,1434 |
(C8×D5)⋊10C22 = D8⋊11D10 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 4 | (C8xD5):10C2^2 | 320,1442 |
(C8×D5)⋊11C22 = C40.47C23 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 4 | (C8xD5):11C2^2 | 320,1417 |
(C8×D5)⋊12C22 = C20.72C24 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 4 | (C8xD5):12C2^2 | 320,1422 |
(C8×D5)⋊13C22 = C2×D5×D8 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | | (C8xD5):13C2^2 | 320,1426 |
(C8×D5)⋊14C22 = C2×D8⋊3D5 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | | (C8xD5):14C2^2 | 320,1428 |
(C8×D5)⋊15C22 = C2×Q8.D10 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | | (C8xD5):15C2^2 | 320,1437 |
(C8×D5)⋊16C22 = D5×C4○D8 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | 4 | (C8xD5):16C2^2 | 320,1439 |
(C8×D5)⋊17C22 = C2×D5×SD16 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | | (C8xD5):17C2^2 | 320,1430 |
(C8×D5)⋊18C22 = C2×SD16⋊3D5 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | | (C8xD5):18C2^2 | 320,1433 |
(C8×D5)⋊19C22 = C2×D20.3C4 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | | (C8xD5):19C2^2 | 320,1410 |
(C8×D5)⋊20C22 = D5×C8○D4 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | 4 | (C8xD5):20C2^2 | 320,1421 |
(C8×D5)⋊21C22 = C2×D5×M4(2) | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | | (C8xD5):21C2^2 | 320,1415 |
(C8×D5)⋊22C22 = C2×D20.2C4 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | | (C8xD5):22C2^2 | 320,1416 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C8×D5).1C22 = D5×C8.C22 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8- | (C8xD5).1C2^2 | 320,1448 |
(C8×D5).2C22 = D20.44D4 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 160 | 8- | (C8xD5).2C2^2 | 320,1451 |
(C8×D5).3C22 = D16⋊D5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).3C2^2 | 320,538 |
(C8×D5).4C22 = C16⋊D10 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 4+ | (C8xD5).4C2^2 | 320,541 |
(C8×D5).5C22 = SD32⋊D5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 160 | 4- | (C8xD5).5C2^2 | 320,542 |
(C8×D5).6C22 = Q32⋊D5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 160 | 4 | (C8xD5).6C2^2 | 320,545 |
(C8×D5).7C22 = D20.30D4 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 160 | 4 | (C8xD5).7C2^2 | 320,1438 |
(C8×D5).8C22 = D20.47D4 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 160 | 4- | (C8xD5).8C2^2 | 320,1443 |
(C8×D5).9C22 = D10.D8 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8- | (C8xD5).9C2^2 | 320,241 |
(C8×D5).10C22 = D40.C4 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8+ | (C8xD5).10C2^2 | 320,244 |
(C8×D5).11C22 = D40⋊1C4 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8+ | (C8xD5).11C2^2 | 320,245 |
(C8×D5).12C22 = Dic20.C4 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 160 | 8- | (C8xD5).12C2^2 | 320,248 |
(C8×D5).13C22 = D40⋊C4 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 40 | 8+ | (C8xD5).13C2^2 | 320,1069 |
(C8×D5).14C22 = D8⋊F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8- | (C8xD5).14C2^2 | 320,1071 |
(C8×D5).15C22 = Dic20⋊C4 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8- | (C8xD5).15C2^2 | 320,1077 |
(C8×D5).16C22 = Q16⋊F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8+ | (C8xD5).16C2^2 | 320,1079 |
(C8×D5).17C22 = D5.D16 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8+ | (C8xD5).17C2^2 | 320,242 |
(C8×D5).18C22 = D8.F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 160 | 8- | (C8xD5).18C2^2 | 320,243 |
(C8×D5).19C22 = D5.Q32 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8- | (C8xD5).19C2^2 | 320,246 |
(C8×D5).20C22 = Q16.F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 160 | 8+ | (C8xD5).20C2^2 | 320,247 |
(C8×D5).21C22 = D8×F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 40 | 8+ | (C8xD5).21C2^2 | 320,1068 |
(C8×D5).22C22 = D8⋊5F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8- | (C8xD5).22C2^2 | 320,1070 |
(C8×D5).23C22 = Q16×F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8- | (C8xD5).23C2^2 | 320,1076 |
(C8×D5).24C22 = Q16⋊5F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8+ | (C8xD5).24C2^2 | 320,1078 |
(C8×D5).25C22 = SD16⋊F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 40 | 8 | (C8xD5).25C2^2 | 320,1073 |
(C8×D5).26C22 = SD16⋊2F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8 | (C8xD5).26C2^2 | 320,1075 |
(C8×D5).27C22 = SD16×F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 40 | 8 | (C8xD5).27C2^2 | 320,1072 |
(C8×D5).28C22 = SD16⋊3F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8 | (C8xD5).28C2^2 | 320,1074 |
(C8×D5).29C22 = M4(2)⋊1F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 40 | 8 | (C8xD5).29C2^2 | 320,1065 |
(C8×D5).30C22 = M4(2).1F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8 | (C8xD5).30C2^2 | 320,1067 |
(C8×D5).31C22 = C80⋊4C4 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).31C2^2 | 320,185 |
(C8×D5).32C22 = C80⋊5C4 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).32C2^2 | 320,186 |
(C8×D5).33C22 = C16⋊F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).33C2^2 | 320,183 |
(C8×D5).34C22 = C16⋊4F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).34C2^2 | 320,184 |
(C8×D5).35C22 = Dic10.C8 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 160 | 8 | (C8xD5).35C2^2 | 320,1063 |
(C8×D5).36C22 = M4(2)×F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 40 | 8 | (C8xD5).36C2^2 | 320,1064 |
(C8×D5).37C22 = M4(2)⋊5F5 | φ: C22/C1 → C22 ⊆ Out C8×D5 | 80 | 8 | (C8xD5).37C2^2 | 320,1066 |
(C8×D5).38C22 = D5×D16 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | 4+ | (C8xD5).38C2^2 | 320,537 |
(C8×D5).39C22 = D16⋊3D5 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | 4- | (C8xD5).39C2^2 | 320,539 |
(C8×D5).40C22 = D5×SD32 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).40C2^2 | 320,540 |
(C8×D5).41C22 = SD32⋊3D5 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | 4 | (C8xD5).41C2^2 | 320,543 |
(C8×D5).42C22 = D5×Q32 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | 4- | (C8xD5).42C2^2 | 320,544 |
(C8×D5).43C22 = D80⋊5C2 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | 4+ | (C8xD5).43C2^2 | 320,546 |
(C8×D5).44C22 = C2×D5×Q16 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | | (C8xD5).44C2^2 | 320,1435 |
(C8×D5).45C22 = C2×C80⋊C2 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | | (C8xD5).45C2^2 | 320,527 |
(C8×D5).46C22 = D20.6C8 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | 2 | (C8xD5).46C2^2 | 320,528 |
(C8×D5).47C22 = D5×M5(2) | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).47C2^2 | 320,533 |
(C8×D5).48C22 = D20.5C8 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | 4 | (C8xD5).48C2^2 | 320,534 |
(C8×D5).49C22 = C80⋊2C4 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).49C2^2 | 320,187 |
(C8×D5).50C22 = C80⋊3C4 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).50C2^2 | 320,188 |
(C8×D5).51C22 = C16.F5 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | 4 | (C8xD5).51C2^2 | 320,189 |
(C8×D5).52C22 = C80.2C4 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | 4 | (C8xD5).52C2^2 | 320,190 |
(C8×D5).53C22 = C2×D5.D8 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | | (C8xD5).53C2^2 | 320,1058 |
(C8×D5).54C22 = (C2×C8)⋊6F5 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).54C2^2 | 320,1059 |
(C8×D5).55C22 = C2×D10.Q8 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | | (C8xD5).55C2^2 | 320,1061 |
(C8×D5).56C22 = C2×C40⋊C4 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | | (C8xD5).56C2^2 | 320,1057 |
(C8×D5).57C22 = C2×C40.C4 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | | (C8xD5).57C2^2 | 320,1060 |
(C8×D5).58C22 = (C8×D5).C4 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).58C2^2 | 320,1062 |
(C8×D5).59C22 = C16×F5 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).59C2^2 | 320,181 |
(C8×D5).60C22 = C16⋊7F5 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).60C2^2 | 320,182 |
(C8×D5).61C22 = C2×D5⋊C16 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | | (C8xD5).61C2^2 | 320,1051 |
(C8×D5).62C22 = C2×C8.F5 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 160 | | (C8xD5).62C2^2 | 320,1052 |
(C8×D5).63C22 = D5⋊M5(2) | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).63C2^2 | 320,1053 |
(C8×D5).64C22 = C2×C8×F5 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | | (C8xD5).64C2^2 | 320,1054 |
(C8×D5).65C22 = C2×C8⋊F5 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | | (C8xD5).65C2^2 | 320,1055 |
(C8×D5).66C22 = C20.12C42 | φ: C22/C2 → C2 ⊆ Out C8×D5 | 80 | 4 | (C8xD5).66C2^2 | 320,1056 |
(C8×D5).67C22 = D5×C2×C16 | φ: trivial image | 160 | | (C8xD5).67C2^2 | 320,526 |